University of Florida
College of Public Health & Health Professions Syllabus

PHC 7083: Artificial Intelligence and Data Science for Epidemiology and Population Health
(3 credit hours)

https://epidemiology.phhp.ufl.edu/academics/courses/#7083
https://ufl.instructure.com/courses/

Semester: Summer A 2024
Delivery Format: On-Campus (HyFlex option)

Instructor Names: Simone Marini, Mattia Prosperi
Room Number: HPNP G-301A
- Tuesdays: 9:30am - 12:15pm
- Thursdays: 9:30am - 10:45am
- Thursdays: 2pm - 6:15pm

Phone Number: (352) 273-5961
Email Address: {simone.marini, m.prosperi}@ufl.edu
Office Hours: On appointment (Fri, 10:00am-12:00pm)
Teaching Assistants: TBA
Preferred Course Communications: email
Prerequisites PHC6000 Epidemiology Research Methods I, and at least one among PHC6052, PHC6053, PHC7065 or PHC6711 (or equivalent quantitative stats/programming course with permission of instructor).

HyFlex Link: https://ufl.zoom.us/j/92005993468?pwd=N05BOUkvd3ExR1A2QmQvZWlticEi5QT09
Meeting ID 920 0599 3468; Passcode 459582

PURPOSE AND OUTCOME

Course Overview. This course teaches artificial intelligence (AI) methods and software apt to predict, interpret data patterns and retrieve, gain knowledge from real-world biomedical data, upon epidemiological study designs.

Relation to Program Outcomes. The course covers new and interdisciplinary aspects of epidemiology in response to the growth of big data repositories, integrated multi-centric studies/cohorts, merges of heterogeneous data sources (genetics, clinical, surveillance, laboratory, sensors), and new data types (such as those from social media). This course brings the Epidemiology PhD program into the ‘next-generation’ era of epi-informatics research and AI/data science, in compliance to up-to-date accreditation standards, and with translational relevance to clinical and professional practice.

The following UF AI Competencies will be addressed in this course:
• **Know and Understand** (35%) – Comprehend the algorithms at the base of AI inference.
• **Use and Apply** (35%) – Determine appropriate AI methodologies to be used given an epidemiology- or public health-focused problem of interest and study design.
• **AI Ethics** (5%) – Understand the possible bias in the data that can affect AI learning and cause potentially harm when used for clinical or public health predictions/interventions.
• **Evaluate and Create** (5%) – Propose novel AI approaches for epidemiology and health sciences.
• **AI Enabled** (20%) – Build hands-on experience in AI programming languages and data analytics software suites.

Course Objectives and/or Goals. This course has the objective to provide the students training in data science expressively for epidemiology, aiming at enabling them to formulate and test appropriate modeling hypotheses for large scale and heterogeneous study designs. This training is valuable for a PhD student who is interested in the ‘next-generation’ data science of epidemiology and biomedical modeling. Upon successful completion of the course, students will be able to:

• Identify data characteristics and issues by design, e.g., how to query an electronic medical record database.
• Formulate (multiple) modeling hypothesis, e.g., how to perform large-scale exploratory analysis on genomics data.
• Design data analysis plans, e.g., how to compare a linear regression prediction model with a decision tree or a deep neural network.
• Parallelize analyses to reduce complexity, e.g., how to prepare statistical scripts to be run on a computer cluster.
• Interpret prediction models and generalize findings, e.g., assess the actionable variables in a risk score and identify strategies to reduce risks.

Knowledge-based goals according to Bloom’s taxonomy of educational objectives:

Knowledge. Recognition of computational learning techniques and health informatics terms/procedures, e.g. “What is a decision tree?”

Comprehension. Ability to extrapolate the functional value of computational models, e.g., “Is a decision tree a nonlinear classifier?”

Application. Ability to use a computational method in a specific context, e.g., “Can you extract data from the health record system following the study design and fit a random forest on the study outcome using a parallelized statistical software library?”

Analysis. Ability to test hypotheses using the data and different modeling approaches, e.g., “What happens if the prior probability is changed when we fit a Bayesian model?”

Synthesis. Ability to combine different computational models on the basis of a problem of interest, e.g., “For this problem, for which we found evidence of nonlinearity, we decide to use the alternating decision tree model to achieve better prediction performance yet maintaining an acceptable level of interpretability.”

Evaluation. Ability to formulate new evidence-based research questions; ability to evaluate the generalizability and translational importance of findings, e.g., “What information domains shall we look at when designing a prediction system for dengue infection risk in Haiti, and what would be the impact of a prediction model that includes modifiable variables for which an intervention could reduce incidence?”

Instructional Methods

Face-to-face lectures (using PPT/PDF or audio/video presentations) divided in three parts: 1) methodological introduction, 2) applied/translational exemplification, 3) students’ feedback (Q&A, reflections/commentaries, et cetera).
Homework. Usage of printed/PDF textbook(s) and critical reading of scientific papers, including critical paper discussion among students. Students are supposed to review course material as suggested by the teacher. The teacher will clearly explain the pathway to acquire the knowledge, develop critical understanding, and explain the requirements for the Assignment(s)/Exam. The reading of all suggested papers (besides those assigned) is not enforced: a student may prefer to study on other texts or educational media if this facilitates their study.

Hands-on practice of AI/machine learning software (open source) either in class with the presence of an instructor or independently using provided materials.

DESCRIPTION OF COURSE CONTENT

Topical Outline/Course Schedule. The course is divided into 24 classes of 1 hour each, and 6 software practices of 3.5 hours each, for a total of 45 contact hours. The lessons are accompanied by PPT/PDF slides and/or research papers. Usually, the last part of the lecture classes is dedicated to interactive questions & answers and discussion on the topics presented, whilst the last part of the practice sessions let the students use the programs by themselves after following the instructor's tutorial.

Time frame for classes. Summer A, twice a week. One day will feature 3 classes; another day will feature 1 class and a software practice. {Days and timeline will be determined based on the academic calendar}.

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures (methods/applications)</th>
<th>Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-4: Principles of AI, data science and machine learning for epidemiology: Coding; Study design for prediction modeling; Measures of prediction performances.</td>
<td>1: Introduction to data formatting and machine learning software suites.</td>
</tr>
<tr>
<td>2</td>
<td>5-8: Technical details on data types and ML methods with application examples.</td>
<td>2: A primer on prediction model design, implementation, parallelization, and evaluation.</td>
</tr>
<tr>
<td>3</td>
<td>9: Molecular epidemiology, from genomics to tracing outbreaks and their dynamics. 10-12: Advanced Machine Learning Models with application examples.</td>
<td>3: Feature extraction, clustering, and classification from scratch.</td>
</tr>
<tr>
<td>4</td>
<td>13-14: Neural Networks. 15-16: Deep learning and explainable AI.</td>
<td>4: Design data analysis plans; dataset assessment, feature design and selection, and parameter search.</td>
</tr>
<tr>
<td>5</td>
<td>17-20: AI Pitfalls, prediction disasters, and how to avoid them.</td>
<td>5: Dealing with noisy and missing data: practical problems and solutions.</td>
</tr>
</tbody>
</table>
Week 1 Readings:

Week 2 Readings:

Week 3 Readings:

Week 4 Readings:

Week 5 Readings:

Week 6 Readings:
- Papers agreed for the journal discussion.

Course Materials and Technology
Teaching material will be posted online. All course slides/videos will be made available for download. The online material (including this syllabus) will be processed through SensusAccess according to Federal, State and University’s accessibility policies and governance.

Textbook(s): None mandatory (the course material and the suggested/assigned papers will be sufficient). Students may ask the teacher for a selection of interesting textbooks in computational epidemiology. Recommended journal papers are listed in the previous section, already divided by topic (lecture). Students might need to install R https://www.r-project.org/ (links to an external site), Orange https://orangedatamining.com/ (links to an external site), and Weka https://www.cs.waikato.ac.nz/ml/weka/ (links to an external site) on their laptop for the practice sessions. All software is free.

For technical support for this class, please contact the UF Help Desk at:
- helpdesk@ufl.edu
- (352) 392-HELP - select option 2
- https://helpdesk.ufl.edu/

Additional Academic Resources

Career Connections Center: Reitz Union Suite 1300, 352-392-1601. Career assistance and counseling services.

Library Support: Various ways to receive assistance with respect to using the libraries or finding resources.

Teaching Center: Broward Hall, 352-392-2010 or to make an appointment 352-392-6420. General study skills and tutoring.

Writing Studio: 2215 Turlington Hall, 352-846-1138. Help brainstorming, formatting, and writing papers.

Student Complaints On-Campus: Visit the Student Honor Code and Student Conduct Code webpage for more information.

On-Line Students Complaints: View the Distance Learning Student Complaint Process.

ACADEMIC REQUIREMENTS AND GRADING

Software skills. The students will build up and demonstrate skills with AI software and AI packages. During the software practice sessions, the instructor will guide students through interactive tutorials, and the students will be monitored in the process to verify that they are able to execute code. Further, the students will analyze datasets on their own and create new code/pipelines, which the instructor will review regularly for proficiency assessment.

Student presentation. Students will present to the class a critical review of a scientific paper addressing computational modeling and large data in epidemiology, population science, public health, or biomedical sciences. Students will be randomly assigned to teams (3-5 students each) that will produce the critical review in the form slides and presentation. Each student will present a specific part of the review (~10 minutes per student) and will be evaluated singularly on clarity of exposure, adherence with the paper, and in-depth analysis of the topic.

While the instructors will provide a list of papers to review, students are encouraged to propose papers they find interesting. Papers need to be approved by the instructors in advance. The presentation counts for 25% of the total final mark; points’ scale is in grade letters (see Grading). Comments and questions to the presentations of other students are highly encouraged.
Exam. There will be five questions, scored 20% each. There will be two or three technical/methodological questions and two or three applied/discussion questions. The instructor will give examples of mock-up exams during classes to prepare the students and post them online.

Tentative exam location(s)/dates(s)/times(s): TBD (based on the calendar). Exam duration will be up to 1 hour.
Grading rubric

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Due date</th>
<th>Points or % of final grade (% must sum to 100%)</th>
<th>Mode of assessment/grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software skills</td>
<td>N/A</td>
<td>20%</td>
<td>Verified in class, with the presence of instructor, and with independent coding.</td>
</tr>
<tr>
<td>Student presentation</td>
<td>TBD</td>
<td>30%</td>
<td>In class or by submission of video recording within set deadlines.</td>
</tr>
<tr>
<td>Exam</td>
<td>TBD</td>
<td>40%</td>
<td>In person, written, five questions with open response (see section above for scoring).</td>
</tr>
<tr>
<td>Attendance and participation</td>
<td>N/A</td>
<td>10%</td>
<td>Attending class, practice sessions, reviewing recorded lectures and online materials. Partial attendance (when not excused or made up for) will be scored proportionally to the total number of in-person classes.</td>
</tr>
</tbody>
</table>

Point system used (i.e., how do course points translate into letter grades). The presentations and the final exam will be assigned a grade each (see table below). The final points-grade will be calculated as the weighted average of the assignments and the exam, i.e., 0.20*Software skills + 0.3*Presentation + 0.5*Exam + 0.1*Attendance. The final letter grade will be obtained by converting the final points-grade in accordance to the table below.

<table>
<thead>
<tr>
<th>Percent</th>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.0 to 100</td>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td>85.0 to 91.9</td>
<td>A-</td>
<td>3.67</td>
</tr>
<tr>
<td>78.0 to 84.9</td>
<td>B+</td>
<td>3.33</td>
</tr>
<tr>
<td>71.0 to 77.9</td>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>64.0 to 70.9</td>
<td>B-</td>
<td>2.67</td>
</tr>
<tr>
<td>57.0 to 63.9</td>
<td>C+</td>
<td>2.33</td>
</tr>
<tr>
<td>Grade</td>
<td>Description</td>
<td>GPA</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>50.0 to 56.9</td>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>43.0 to 49.9</td>
<td>C-</td>
<td>1.67</td>
</tr>
<tr>
<td>36.0 to 42.9</td>
<td>D+</td>
<td>1.33</td>
</tr>
<tr>
<td>29.0 to 35.9</td>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>22.0 to 28.9</td>
<td>D-</td>
<td>0.67</td>
</tr>
<tr>
<td>0 to 21.9</td>
<td>E</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Please be aware that a C- is not an acceptable grade for graduate students. The GPA for graduate students must be 3.0 based on 5000 level courses and above to graduate. A grade of C counts toward a graduate degree only if based on credits in courses numbered 5000 or higher that have been earned with a B+ or higher.

More information on UF grading policy may be found at: https://gradcatalog.ufl.edu/graduate/regulations/

Policy Related to Make up Exams or Other Work. Please note: Any requests for make-ups due to technical issues MUST be accompanied by the UF Computing help desk (http://helpdesk.ufl.edu/) correspondence. You MUST e-mail the instructors within 24 hours of the technical difficulty if you wish to request a make-up. Requests for make-ups due to non-technical issues will be evaluated by the instructors on case-basis subject to further recommendation by the PhD program Director.

Policy Related to Required Class Attendance. Excused absences must be consistent with university policies in the Graduate Catalog (https://catalog.ufl.edu/graduate/regulations/#text). Additional information can be found here: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx

Attendance will be verified by the instructor at the beginning of each class. Excused absences can be reported to the instructor prior to or on the day of absence, not later. Absence is defined as not showing up at class or being late more than 15 minutes.

STUDENT EXPECTATIONS, ROLES, AND OPPORTUNITIES FOR INPUT

Expectations Regarding Course Behavior. Keep cell phones silenced in class. Ask permission to teacher and students for using audio/video/image recording devices. Be educated and polite.

Exam Policy. The student may neither bring any didactic material, nor have an open computer or phone on their desk.

Communication Guidelines. Follow netiquette for online communications:

Academic Integrity

Students are expected to act in accordance with the University of Florida policy on academic integrity. As a student at the University of Florida, you have committed yourself to uphold the Honor Code, which includes the following pledge:

“We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity.”
You are expected to exhibit behavior consistent with this commitment to the UF academic community, and on all work submitted for credit at the University of Florida, the following pledge is either required or implied:

“On my honor, I have neither given nor received unauthorized aid in doing this assignment.”

It is your individual responsibility to know and comply with all university policies and procedures regarding academic integrity and the Student Honor Code. Violations of the Honor Code at the University of Florida will not be tolerated. Violations will be reported to the Dean of Students Office for consideration of disciplinary action. For additional information regarding Academic Integrity, please see Student Conduct and Honor Code or the Graduate Student Website for additional details:

https://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/
http://gradschool.ufl.edu/students/introduction.html

Please remember cheating, lying, misrepresentation, or plagiarism in any form is unacceptable and inexcusable behavior.

Recording Within the Course:

Students are allowed to record video or audio of class lectures. However, the purposes for which these recordings may be used are strictly controlled. The only allowable purposes are (1) for personal educational use, (2) in connection with a complaint to the university, or (3) as evidence in, or in preparation for, a criminal or civil proceeding. All other purposes are prohibited. Specifically, students may not publish recorded lectures without the written consent of the instructor.

A “class lecture” is an educational presentation intended to inform or teach enrolled students about a particular subject, including any instructor-led discussions that form part of the presentation, and delivered by any instructor hired or appointed by the University, or by a guest instructor, as part of a University of Florida course. A class lecture does not include lab sessions, student presentations, clinical presentations such as patient history, academic exercises involving solely student participation, assessments (quizzes, tests, exams), field trips, private conversations between students in the class or between a student and the faculty or lecturer during a class session.

Publication without permission of the instructor is prohibited. To “publish” means to share, transmit, circulate, distribute, or provide access to a recording, regardless of format or medium, to another person (or persons), including but not limited to another student within the same class section. Additionally, a recording, or transcript of a recording, is considered published if it is posted on or uploaded to, in whole or in part, any media platform, including but not limited to social media, book, magazine, newspaper, leaflet, or third-party note/tutoring services. A student who publishes a recording without written consent may be subject to a civil cause of action instituted by a person injured by the publication and/or discipline under UF Regulation 4.040 Student Honor Code and Student Conduct Code.

Policy Related to Guests Attending Class:

Only registered students are permitted to attend class. However, we recognize that students who are caretakers may face occasional unpected challenges creating attendance barriers. Therefore, by exception, a department chair or his or her designee (e.g., instructors) may grant a student permission to bring a guest(s) for a total of two class sessions per semester. This is two sessions total across all courses. No further extensions will be granted. Please note that guests are not permitted to attend either cadaver or wet labs. Students are responsible for course material regardless of attendance. For additional information, please review the Classroom Guests of Students policy in its entirety. Link to full policy: https://phhp.ufl.edu/policy-classroom-guests-of-students/
Online Faculty Course Evaluation Process

Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at https://gatorevals.aa.ufl.edu/students/. Students will be notified when the evaluation period opens, and can complete evaluations through the email they receive from GatorEvals, in their Canvas course menu under GatorEvals, or via https://ufl.bluera.com/ufl/. Summaries of course evaluation results are available to students at https://gatorevals.aa.ufl.edu/public-results/.

SUPPORT SERVICES

HyFlex
https://citt.ufl.edu/resources/teaching-in-a-classroom-with-hyflex/hyflex-technology/

The classes will be in person, but the course is also offered with HyFlex option in order to (1) accommodate all students’ learning needs through different means, equalizing opportunities for access and content fruition, and (2) maximize the newest technology components (especially for software practice). Specifically, the classroom will include zoom streaming capabilities, an interactive virtual whiteboard, and prerecorded lectures will be posted online.

Please note that the exam will be in person (while presentations and practice assessment can be performed online or asynchronously).

Accommodations for Students with Disabilities

If you require classroom accommodation because of a disability, it is strongly recommended you register with the Dean of Students Office http://www.dso.ufl.edu within the first week of class or as soon as you believe you might be eligible for accommodations. The Dean of Students Office will provide documentation of accommodations to you, which you must then give to me as the instructor of the course to receive accommodations. Please do this as soon as possible after you receive the letter. Students with disabilities should follow this procedure as early as possible in the semester. The College is committed to providing reasonable accommodations to assist students in their coursework.

Counseling and Student Health

Students sometimes experience stress from academic expectations and/or personal and interpersonal issues that may interfere with their academic performance. If you find yourself facing issues that have the potential to or are already negatively affecting your coursework, you are encouraged to talk with an instructor and/or seek help through University resources available to you.

- The Counseling and Wellness Center 352-392-1575 offers a variety of support services such as psychological assessment and intervention and assistance for math and test anxiety. Visit their web site for more information: http://www.counseling.ufl.edu. On line and in person assistance is available.
- U Matter We Care website: http://www.umatter.ufl.edu/. If you are feeling overwhelmed or stressed, you can reach out for help through the You Matter We Care website, which is staffed by Dean of Students and Counseling Center personnel.
- The Student Health Care Center at Shands is a satellite clinic of the main Student Health Care Center located on Fletcher Drive on campus. Student Health at Shands offers a variety of clinical services. The clinic is located on the second floor of the Dental Tower in the Health Science Center. For more information, contact the clinic at 392-0627 or check out the web site at: https://shcc.ufl.edu/
• Crisis intervention is always available 24/7 from: **Alachua County Crisis Center:** (352) 264-6789
 http://www.alachuacounty.us/DEPTS.CSS/CRISIS CENTER/Pages/CrisisCenter.aspx

• **University Police Department:** Visit UF Police Department website or call 352-392-1111 (or 9-1-1 for emergencies).

• **UF Health Shands Emergency Room / Trauma Center:** For immediate medical care call 352-733-0111 or go to the emergency room at 1515 SW Archer Road, Gainesville, FL 32608; Visit the UF Health Emergency Room and Trauma Center website.

Do not wait until you reach a crisis to come in and talk with us. We have helped many students through stressful situations impacting their academic performance. You are not alone so do not be afraid to ask for assistance.

Inclusive Learning Environment

Public health and health professions are based on the belief in human dignity and on respect for the individual. As we share our personal beliefs inside or outside of the classroom, it is always with the understanding that we value and respect diversity of background, experience, and opinion, where every individual feels valued. We believe in, and promote, openness and tolerance of differences in ethnicity and culture, and we respect differing personal, spiritual, religious and political values. We further believe that celebrating such diversity enriches the quality of the educational experiences we provide our students and enhances our own personal and professional relationships. We embrace The University of Florida’s Non-Discrimination Policy, which reads, “The University shall actively promote equal opportunity policies and practices conforming to laws against discrimination. The University is committed to non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, gender identity and expression, marital status, national origin, political opinions or affiliations, genetic information and veteran status as protected under the Vietnam Era Veterans’ Readjustment Assistance Act.” If you have questions or concerns about your rights and responsibilities for an inclusive learning environment, please see your instructor or refer to the Office of Multicultural & Diversity Affairs website: **www.multicultural.ufl.edu**.