<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Format</th>
<th>Instructor</th>
<th>Credits</th>
<th>Time/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHC 6000</td>
<td>Epidemiology Methods I</td>
<td>In Person</td>
<td>Kelly K. Gurka, MPH, PhD</td>
<td>3</td>
<td>Thursdays, 10:40a-1:40p, HPNP G-101</td>
</tr>
</tbody>
</table>

Prerequisites: PHC 6001 and PHC 6050 or PHC 6052, or permission from the instructor.

This course provides an understanding of the methods of epidemiological study designs and their analyses, including issues of bias, confounding, and effect modification. The goal of this class is to provide a strong background in analytic reasoning and research design, study execution, analysis, and result interpretation.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Format</th>
<th>Instructor</th>
<th>Credits</th>
<th>Time/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHC 6001</td>
<td>Principles of Epidemiology in Public Health</td>
<td>Online Asynchronous</td>
<td>Cindy Prins, PhD, MPH, CIC, CPH</td>
<td>3</td>
<td>Online</td>
</tr>
</tbody>
</table>

Prerequisites: None.

This course is an introduction to epidemiology for students majoring in any aspect of the health sciences. This course presents the principles and methods of the epidemiological investigation of both infectious and non-infectious diseases. The purpose of this course is to equip students with the necessary knowledge and skills to explain the place of epidemiology in the general health thinking and to communicate and apply the basic principles of epidemiology.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Format</th>
<th>Instructor</th>
<th>Credits</th>
<th>Time/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHC 6598</td>
<td>Foundations in Precision Medicine: Genetic Epidemiology</td>
<td>Online Asynchronous</td>
<td>Julio D. Duarte, PharmD, PhD, FAHA</td>
<td>1</td>
<td>Online</td>
</tr>
</tbody>
</table>

Prerequisites: None.

Genetic epidemiology, a rapidly evolving field of research, utilizes specialized molecular and statistical methods to identify genetic factors that might be involved in disease etiology. This course provides an exposure to fundamental concepts, terminologies and principles in human population genetics and molecular biology relevant to understanding genetic epidemiologic approaches.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Format</th>
<th>Instructor</th>
<th>Credits</th>
<th>Time/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHC 6937</td>
<td>Introduction to Mixed Methods Research</td>
<td>In Person</td>
<td>Deepthi Varma, PhD, MPhil, MSW</td>
<td>3</td>
<td>Mondays, 8:30a-11:30a, HPNP G-108</td>
</tr>
</tbody>
</table>

Prerequisites: PHC 6001 Principles of Epidemiology in Public Health and PHC 6000 Epidemiology Methods I (or equivalent research methods coursework). Students with no prior instruction in epidemiology but with methodological coursework from another related discipline may be admitted with permission from the instructor.

This 3-credit, on-campus course will introduce mixed methods research concepts to master's and doctoral level students. This course focuses on the design and implementation of research that combines qualitative and quantitative data collection, and will discuss the purpose of “mixing methods” and ways to integrate qualitative and quantitative data.
PHC 7000: Epi Seminar II: Critical Evaluation, Research Proposals, and Methods
Format: In Person
Instructor: Krishna Vaddiparti, PhD, MPE, MSW
Credits: 2
Tuesdays, 8:30a-10:25a
Grading Scheme: Letter
Prerequisites: PHC 6001 and PHC 6000, one semester of biostatistics, and PhD student status in epidemiology, or permission from the instructor.
This course is taken in the second year of the epidemiology PhD program curriculum. The seminar series is designed to introduce students to a range of advanced epidemiologic concepts and research methods to help PhD students advance their dissertation ideas and obtain the skills needed for a PhD in epidemiology.

PHC 7007: Cancer Epidemiology
Format: In Person
Instructor: Volker Mai, PhD, MPH
Credits: 3
Mondays, 11:45a-12:35p; Wednesdays, 10:40a-12:35p
Grading Scheme: Letter
Prerequisites: PHC 6001 and PHC 6050 or PHC 6052, or permission from the instructor.
This course is designed to help students develop the interdisciplinary skills required for evaluating various existing and hypothetical public health interventions aimed at reducing the burden of cancer in the US and worldwide. The course will familiarize students with various exposures associated with the risk of developing cancer with emphasis on a population perspective. While a focus will be on opportunities for prevention; we will explore cellular mechanisms contributing to the development of various cancers and describe associated pathologies. Cancer epidemiology is taught in a combined lecture and discussion format.

PHC 7038: Psychiatric Epidemiology
Format: In Person
Instructor: Catherine W. Striley, PhD, MSW, ACSW, MPE
Credits: 3
Mondays, 12:50p-3:50p
Grading Scheme: Letter
Prerequisites: PHC 6000 and PHC 6011, or permission from the instructor.
This advanced epidemiology methods course in Psychiatric Epidemiology will cover concepts, history, measures, methods and analytic techniques to study the risks, prevalence and incidence, course, comorbidities and consequences of major mental disorders (mood and anxiety disorders, schizophrenia, personality disorders, alcohol and drug abuse and dependence). Psychiatric epidemiology studies in general and specific populations internationally will be discussed for their methods, measures and findings.

PHC 7065: Critical Skills in Data Manipulation for Population Science
Format: In Person
Instructor: Huaizhen Qin, PhD
Credits: 2
Tuesday, 3:00p-4:55p
Grading Scheme: Letter
Prerequisites: PHC 6052 and PHC 6000 or the equivalent and PhD student status, or permission from the instructor.
This course focuses on providing basic knowledge and skills needed in data manipulation for population science. Included will be: data context and concepts; relational databases; data collection and extraction; Parallel manipulation of massive datasets; NoSQL systems and concepts. The course is designed for advanced students to learn the “code of best practice” for data engineering in population science.
PHC 7199: Topics in Precision Medicine and Public Health Informatics

Format: In Person

Instructor: Mattia Prosperi, MEng, PhD

Credits: 1

Grading Scheme: Letter

Every other Tuesday, 10:40a-12:35p

Room TBD

Prerequisites: PHC 6000, PHC 6011, and a SAS course, or equivalent graduate statistical and quantitative research courses in any relevant department, or permission from the instructor.

This course covers topics in precision medicine and public health informatics. The course was inspired by the White House 2015 initiative in precision medicine which stated that its mission is "to enable a new era of medicine through research, technology, and policies that empower patients, researchers, and providers to work together toward development of individualized care." Students will learn how the initiative is being concretized since its inception, by studying real-world examples, and deepening on both the methodological and translational aspects.

PHC 7902: Scientific Writing for Peer Reviewed Publications for Population Science

Format: Online Synchronous

Instructor: Linda B. Cottler, PhD, MPH, FACE

Credits: 1

Mondays, 5:10p-7:05p

Grading Scheme: Letter

Prerequisites: Graduate student status, or permission from the instructor.

This course will prepare students to perform peer review and to think critically. In weekly class discussion sessions, students will review each other’s work and bring work to edit and share. Feedback will be given by student peers and the course instructor. The principal goals of this Epidemiology Writing Circle are to: 1) improve the student’s academic writing style, 2) write, complete, and submit papers – with at least one as a first author, and 3) edit colleague’s manuscripts, regardless of topic area.